Energy: Forms and Changes

Nature of Energy

Living organisms need energy for growth and movement.

Nature of Energy

- What is energy that it can be involved in so many different activities?
 - Energy can be defined as the ability to do work.
 - If an object or organism does work (exerts a force over a distance to move an object) the object or organism uses energy.

Nature of Energy

 Energy and work is measured in joules (J).

The Law of Conservation of Energy

- Energy can be neither created nor destroyed by ordinary means.
 - It can only be converted from one form to another.
 - If energy seems to disappear, then scientists look for it – leading to many important discoveries.

Law of Conservation of Energy

 In 1905, Albert Einstein said that mass and energy can be converted into each other.

$${}_{\circ}E = MC^2$$

E = Energy

M = Mass

0

C² = Speed of Light

States of Energy

 All forms of energy can be in either of two states:

- Potential
- Kinetic

States of Energy: Kinetic and Potential Energy

Kinetic Energy is the energy of motion.
Potential Energy is stored energy.

Kinetic Energy

- The faster an object moves, the more kinetic energy it has.
- The greater the mass of a moving object, the more kinetic energy it has.
- Kinetic energy depends on both mass and velocity.

Kinetic Energy

K.E. = $\frac{\text{mass x velocity}^2}{2}$

What has a greater affect of kinetic energy, mass or velocity? Why?

Potential Energy

- Stored chemically in fuel, the nucleus of atom, and in foods.
- Or stored because of the work done on it:
 - Stretching a rubber band.
 - Winding a watch.
 - Pulling back on a bow's arrow.
 - Lifting a brick high in the air.

Gravitational Potential Energy

 Potential energy that is dependent on height is called gravitational potential energy.

Gravitational Potential Energy

- "The bigger they are the harder they fall" is not just a saying. It's true. Objects with more mass have greater G.P.E.
- The formula to find G.P.E. is G.P.E. = Weight X Height.

Maximum Kinetic Energy

Forms of Energy

- The five main forms of energy are:
 - Heat
 - Chemical
 - Electromagnetic
 - Nuclear
 - Mechanical

Heat Energy

- The internal motion of the atoms is called heat energy, because moving particles produce heat.
- Heat energy can be produced by friction.
- Heat energy causes changes in temperature and phase of any form of matter.

Chemical Energy

Chemical Energy is required to bond atoms together.
And when bonds are broken, energy is released.

Chemical Energy

 Fuel and food are forms of stored chemical energy.

Electromagnetic Energy

 Power lines carry electromagnetic energy into your home in the form of electricity.

Electromagnetic Energy

- Light is a form of electromagnetic energy.
- Each color of light (Roy G Bv) represents a different amount of electromagnetic energy.
- Electromagnetic Energy is also carried by X-rays, radio waves, and laser light.

Nuclear Energy

The nucleus

 of an atom is
 the source of
 nuclear
 energy.

Nuclear Energy

 Nuclear energy is the most concentrated form of energy.

Nuclear Energy

- When the nucleus splits (fission), nuclear energy is released in the form of heat energy and light energy.
- Nuclear energy is also released when nuclei collide at high speeds and join (fuse).

Mechanical Energy

 When work is done to an object, it acquires energy. The energy it acquires is known as mechanical energy.

Energy Conversion

 Energy can be changed from one form to another. Changes in the form of energy are called energy conversions.

Energy conversions

• All forms of energy can be converted into other forms.

- The sun's energy through solar cells can be converted directly into electricity.
- Green plants convert the sun's energy (electromagnetic) into starches and sugars (chemical energy).

Energy Conversions

 In an automobile engine, fuel is burned to convert chemical energy into heat energy.
 The heat energy is then changed into mechanical energy.

Chemical \rightarrow Heat \rightarrow Mechanical