Genetics Notes

Who is Gregor Mendel? "Father of Genetics"

Principle of Independent Assortment - Inheritance of one trait has no effect on the inheritance of another trait

Man of Science

Traits

- Genetics - study of how traits are passed from parent to offspring

- Traits are determined by the genes on the chromosomes. A gene is a segment of DNA that determines a trait.

- Chromosomes come in homologous pairs, thus genes come in pairs. Homologous pairs - matching genes - one from female parent and one from male parent
- Example: Humans have 46 chromosomes or $2 \underline{3}$ pairs. One set from dad - 23 in sperm One set from mom - 23 in egg

Sister chromatids are exact replicas but homologous chromosomes are not.

Homologous regions code
for the same gene.

y

- One pair of Homologous Chromosomes:

Gene for eye color
(blue eyes)

Homologous pair
 of chromosomes

Gene for eye color
(brown eyes)

Alleles - different genes (possibilities) for the same trait ex: blue eyes or brown eyes

Dominant and Recessive Genes

- Gene that prevents the other gene from "showing" dominant
- Gene that does NOT "show" even though it is present recessive
- Symbol - Dominant gene - upper case letter - $\underline{\text { I }}$ Recessive gene - lower case letter - t

Recessive color

Example: Straight thumb is dominant to hitchhiker thumb

$$
\underline{T}=\text { straight thumb } \underline{t}=\text { hitchhikers thumb }
$$

(Always use the same letter for the same allelesNo $\mathrm{S}=$ straight, $\mathrm{h}=$ hitchhiker's)

Straight thumb = TT
Straight thumb $=\mathrm{Tt}$ Hitchhikers thumb $=\mathrm{tt}$

* Must have $\underline{2}$ recessive alleles for a recessive trait to "show"
- Both genes of a pair are the same homozygous or purebred TT - homozygous dominant tt - homozygous recessive
- One dominant and one recessive gene heterozygous or hybrid

Tt - heterozygous

BB - Black Bb - Black w/ white gene

bb - White

Genotype and Phenotype

- Combination of genes an organism has (actual gene makeup) - genotype
Ex: TT, Tt, tt
- Physical appearance resulting from gene make-up phenotype
Ex: hitchhiker's thumb or straight thumb

Punnett Square and Probability

- Used to predict the possible gene makeup of offspring Punnett Square
- Example: Black fur (B) is dominant to white fur (b) in mice

1. Cross a heterozygous male with a homozygous recessive female.

Male $=\quad \mathbf{X}$ Female $=$

Genotypic ratio $=2, \quad: 2$
50\% Bb : 50\% bb
Phenotypic ratio $=2$
: 2
50\% black : 50\% white

Write the ratios in the following orders:

Genotypic ratio

homozygous: heterozygous : homozygous dominant recessive

Phenotypic ratio dominant : recessive

Cross 2 hybrid mice and give the genotypic ratio and phenotypic ratio.

X

$$
\text { typic ratio }=\frac{:}{:}
$$

typic ratio $=\quad$:
75\% black : 25% white

Example: A man and woman, both with brown eyes (B) marry and have a blue eyed (b) child. What are the genotypes of the man, woman and child?

X

Man =
Woman =

- Example: In rabbits black coat (B) is dominant over brown (b) and straight hair (H) is dominant to curly (h). Cross a rabbit that is homozygous dominant for both traits with a rabbit that is homozygous dominant for black coat and heterozygous for straight hair. Then give the phenotypic ratio for the first generation of offspring.

X

Possible gametes:
\longleftarrow Gametes
Phenotypes:
100\% \qquad

Gametes
(Hint: Only design Punnett squares to suit the number of possible gametes.)

Sex Determination

－People－ 46 chromosomes or 23 pairs
－ 22 pairs are homologous（look alike）－called autosomes－ determine body traits
1 pair is the sex chromosomes－determines sex（male or female）
－Females－sex chromosomes are homologous（look alike）－label XX Males－sex chromosomes are different－label XY

male		female							
00	80	80	VHO_{0}	88			Yy	\％\％）	ถ้\％
1	2	3	4	5	1	2	3	4	5
80	88	ys	O\％	80	88	\％\％	กัง	\％f	88
6	7	8	9	10	6	7	8	9	10
80	no	$0{ }^{\circ} \mathrm{j}$	dì	dă	88	ถู\％	¢̆ ${ }^{\text {b }}$	करण	ガメ
11	12	13	14	15	11	12	13	14	15
ก้\％	ว\％	ว้ด	8 H	\％$\%$	คั\％	\％\％	あ\％	\％\％	สห
16	17	18	19	20	16	17	18	19	20
88	\％	θ			\％${ }^{\text {d }}$	あぁ			
21	22	X Y			21	22			

- What is the probability of a couple having a boy? Or a girl?

Chance of having female baby? male baby?

Who determines the sex of the child?

Incomplete dominance and Codominance

- When one allele is NOT completely dominant over another (they blend) - incomplete dominance

Example: In carnations the color red (R) is incompletely dominant over white (W). The hybrid color is pink. Give the genotypic and phenotypic ratio from a cross between $\underline{2}$ pink flowers.

- When both alleles are expressed - Codominance Example: In certain chickens black feathers are codominant with white feathers.

Heterozygous chickens have black and white speckled feathers.

Sex - linked Traits

- Genes for these traits are located only on the \underline{X} chromosome (NOT on the Y chromosome)
- X linked alleles always show up in males whether dominant or recessive because males have only one X chromosome

Let's say there's a recessive gene located here.

Here there is no corresponding gene to block the first. This recessive gene is displayed even though there is only one.

- Examples of recessive sex-linked disorders:

1. colorblindness - inability to distinguish between certain colors

You should see 58 (upper left), 18 (upper right), E (lower left) and 17 (lower right).

Various tests for color blindness
Color blindness is the inability to distinguish the differences between certain colors. The most common type is red-green color blindness, where red and green are seen as the same color.

2. hemophilia - blood won't clot

- Example: A female that has normal vision but is a carrier for colorblindness marries a male with normal vision. Give the expected phenotypes of their children.
$\mathrm{N}=$ normal vision
$\mathrm{n}=$ colorblindness
X

Phenotype:

Pedigrees

- Graphic representation of how a trait is passed from parents to offspring
- Tips for making a pedigree

1. Circles are for females
2. Squares are for males
3. Horizontal lines connecting a male and a female represent a marriage
4. Vertical line and brackets connect parent to offspring
5. A shaded circle or square indicates a person has the trait
6. A circle or square NOT shaded represents an individual who does NOT have the trait
7. Partial shade indicates a carrier someone who is heterozygous for the trait

- Example: Make a pedigree chart for the following couple. Dana is color blind; her husband Jeff is not. They have two boys and two girls. HINT: Colorblindness is a recessive sex-linked trait.

Has trait
Can pass trait to offspring

